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Abstract. We present in this work a discussion on the quantitative bonding information that can be
deduced from the topological analysis of the crystal wave function of 120 alkali halide perovskites.
The formalism, recently presented, is a development of the theory of atoms in molecules of Bader
into the domain of crystalline materials. We discuss the shape of the ions and show how the
classical picture in terms of slightly deformed spheres is contained in the topological description.
The nature of the chemical bond in these systems is depicted by means of graphical representation
of the electron density and its Laplacian along the surfaces of the attraction basins. The ionicity of
the crystals and the behaviour of the ionic radii are also briefly reviewed.

(Some figures in this article appear in colour in the electronic version; seewww.iop.org)

1. Introduction

The concept of molecular structure as a collection of atoms linked together by a network of
bonds is essential in chemistry, physics, and biology. Its great relevance is firmly based on
the force of countless experiments and its success derives, above all, from its capability for
organizing empirical information. Remarkably, this concept appears to be unrelated to the
postulates of quantum mechanics, in spite of the immensely fruitful absorption of quantum
ideas by molecular sciences.

The theory of atoms in molecules (AIM) developed by Bader and collaborators [1–3] has
provided, however, a rigorous quantum mechanical foundation for the concept of molecular
structure. By means of the analysis of the multielectron molecular wave function, AIM
theory gives unambiguous answers to many questions of fundamental character and frequent
appearance, such as those of atom size and shape, and ionicity, that otherwise seem to occupy a
field alien to the quantum interpretation. The AIM theory does not rely on any approximation,
or make use of any experimental information. The quality of its predictions is determined by
the quality of the wave function analysed.

AIM theory has been extensively applied to gas-phase molecules. Recently, we have
presented [4–6] an analysis of the topological properties of the electron density of crystalline
solids based on the AIM framework. When applied to periodic systems, the topological
analysis produces a number of very interesting new concepts that can be immediately related
to prequantum ideas that dominate the empirical discourse on the crystalline structure. As
the AIM theory gives an unambiguous description and numerical values for many of these
empirical ideas, it can provide a very suitable route to understanding complicated features of
bonding and structure in solids, as it has done in the case of molecules.
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In this work we complement the recent study of the ionic perovskites [5], discussing new
results and insights deduced from the AIM approach as regards questions such as those of
ionic size, ionic representation, and bonding description. The main idea emerging from this
work, in addition to all of those discussed before [4, 5], is that empirical models, like that
representing the solid as a collection of slightly deformed spheres with a definite electronic
charge, can not only be deduced from the AIM theory but also be related in a continuous and
accurate way to the formal descriptions directly emerging from topological analysis. This
makes the topological approach particularly appealing. In section 2 we give a brief account of
the formalism and previous work and in section 3 we present the results and a discussion.

2. AIM theory for crystals; a brief review

2.1. The elementary building blocks

The topological analysis of atoms and molecules developed by Bader and collaborators [1–3]
introduces a partition of the Euclidean space into nonoverlapping regions defined by surfaces
of zero flux gradient of the electron densityρ. Determination of these surfaces is accomplished
by locating the position and type of the zero-gradient points, the critical points (CP), and the
field lines connecting them. CP have associated attraction basins orloci of space points whose
field lines share the end or start CP. A nucleus plus its basin is identified with an atom. Bonding
appears when the two lines emerging from a bond CP have different attractors. The network
made of nuclei and their bonds is the molecular graph. When it shows a cycle the system is
said to have a ring, which has a ring CP inside the linked nuclei. A set of noncoplanar rings
may form a cavity holding a cage CP inside.

For crystals, periodicity introduces some new perspectives:

(a) Space group symmetry restricts the possible positions and types of CPs, as it should. The
total number of CPs must obey the Morse relation:n− b + r − c = 0, withn > 1,b > 3,
r > 3, andc > 1; n, b, r, andc are the numbers of nuclear, bond, ring, and cage CPs.

(b) The concept of primary bundle appears, as the set of trajectories starting at a given min-
imum and ending at a given maximum. They are the minimum region of space surrounded
by zero-flux-gradient surfaces. All primary bundles sharing the same nucleus form its
attraction basin. Within these regions, the basic principles of quantum mechanics apply.
Furthermore, they are topologically equivalent to convex polyhedra of which the cage
points are vertices, the bond points are faces, and the ring points are edges. The nucleus
plus its attraction basin is identified as the atomic shape.

(c) The attraction basins must be finite and the atomic volume can be unambiguously defined.

The problem of finding the CPs is far from trivial. Extensive analysis and software dev-
elopment has been completed in our group [6] to make this problem tractable.

2.2. The classification scheme

The rich topological information contained in the electronic density can be clarified by
means of taxonomic instruments that permit a hierarchical organization of the crystal under
consideration. In the case of the 120 AMX3 perovskites discussed in [5] (A= Li, Na, K, Rb,
Cs; M= Be, Mg, Ca, Sr, Ba, Zn; X= F, Cl, Br, I), the following classification scheme has
been useful.

The special positions of thePm3̄m group 1a, 1b, 3c, and 3d must be CPs. Only the 3c
position is not occupied by crystal ions. The type of CP at this point is the first taxonomic
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criterion, introducing the concept of topological family. The assignment is as follows. Families
will be calledB, R, C if the CP at 3c is a bond, ring, or cage point, respectively. A family
contains many crystals: 2 inB, 48 inC, 70 inR. Further organization is gained through a second
classification criterion: the total number of different-symmetry CPs,τ = τn + τb + τr + τc,
where theτi are the total numbers of different CPs of each type. This second level gives
the topological species. TheB family has only one species, theB10. TheC andR families
each have three:C8, C10, C12 andR9, R11, R13. This makes a total of seven topological
species with the following distribution of crystals among them:B10(2), C8(21), C10(15),
C12(12),R9(27),R11(25),R13(18). An inverse relation between topological complexity of the
species (τ -number) and their crystal occupation is immediately observed. Notice the surprising
complexity in the topology of the density of these 120 crystallographically analogous crystals.

The organizing power of a topological classification like this has a counterpart in geom-
etrical quantities like the ionic radii, thus representing a promising instrument for discovery.
TheB family contains three different bonds:b1 (M–X), b2 (A–X), andb4 (A–A). TheC and
R families do not have A–A bonds. They haveb1, b2, andb3 (X–X) bonds. Thus, only the
two members of theB family, CsSrF3 and CsBaF3, have A–A bonds.

2.3. The graphical representation

In simple molecules, the arrangement of the CPs and their connecting lines creates the
molecular graph, which immediately depicts the familiar image of the molecule. For solids,
depicting this graph is a nontrivial task, given the huge number of CPs in the unit cell (up to 104
in theR13 family). A much more feasible and charming alternative is to three-dimensionally
depict the attraction basin for each ion. A basin has no CPs inside, apart from its nuclear
point. All other CPs lie at the 2D boundaries. We can associate with these CPs a polyhedron:
cage points becoming vertices, bond points faces, and ring points edges. In this way, we can
approximate the attraction basins by polyhedra.

Now we can see the difference between the classical view of the atomic building of a
crystal, in terms of slightly deformed spheres, and the topological visualization of the atomic
regions. The conceptual model of classical spheres has two salient features:

(a) it strongly suggests the existence of isotropic atomic radii, and

(b) the spheres do not fill the entire space.

The first feature lies at the root of the well-known difficulty of organizing crystal arrange-
ments by means of empirical radii. The second one produces interstitial spaces that remain
explicitly out of the picture. Again this limitation appears many times, as in the muffin-tin
approximation.

The topological approach does not suffer from these two deficiencies. Attraction basins
give different radii for different directions and fill the entire space. Some striking consequences
of this filling have been discussed before [5], as the appearance of spectacular wings in the
fluoride basins of LiCaF3.

In figure 1 we show the ionic basins of KCaF3, a crystal of theC8 species. Here the fluoride
basin shows remarkably the spikes needed to fill the space without forming F–F bonds. More
complex topological species, containing X–X bonds, have less demanding requirements and
show basins that have round, nearly spherical shapes. As a notable consequence, the more
complex topological species show simpler, more familiar 3D representations of the ionic basins,
whereas the striking geometrical forms appear in the simplest topological species.
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Figure 1. Ionic basins for KCaF3 computed with the program CRITIC and rendered with POV-
Ray [12].

2.4. Topology and geometry

We finally recall that this topological diversity has a geometrical counterpart. It has been
discussed elsewhere [5]. We simply notice here that the topological analysis allows a direct
estimation of ionic radii, along different bond directions, as the distance from the nucleus to
the surface of its basin. So,b1 (M–X) CPs give the cationic radiusRM and the anionic radius
R1X, b2 (A–X) givesRA andR2X, andb3 (X–X) givesR3X. The very remarkable result is that
the quantitiesξ = RM/R1X andη = RA/R2X define a plane that completely determines the
topological species of the crystal. Ifη > 0.88, the crystal belongs to theC family; otherwise
it belongs to theR family. Also, the topological complexity decreases whenξ increases. No
empirical scheme of atomic radii has shown such an accurate classification strength.

3. Quantitative bonding information derived from the electronic density

We now discuss results obtained from the analysis of the crystal wave function computed
for these 120 perovskites with theab initio perturbed-ion method [7, 8] at the theoretically
determined equilibrium geometries. Exponential basis sets of Clementi and Roetti [9] have
been used for all cases and the unrelaxed hard Coulomb hole formalism of Clementi [10] has
been adopted for estimating the correlation energy.

We will briefly discuss some examples that show the wealth of quantitative information
that can be obtained from the topological analysis of the electron density. Relevant bonding
information appears from appropriate manipulation of the density itself, as well as from related
scalar fields. Furthermore, quantitative information emerges from the fact that attraction basins
are regions of space in which the laws of quantum mechanics hold. Thus, we can extract the
required information by direct integration of appropriate quantum mechanical operators over
the electron density [11].

Details of the accurate numerical quadratures required to accomplish this goal have been
given elsewhere [5]. Accuracies better than 0.01 Å3 in the cell volume and better than 0.001 au
in electronic charge have been achieved in these perovskites.
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3.1. What is the shape of the ions?

We have seen above that the topological partition of the crystal completely fills the space
and that the atomic shapes are assigned to convex polyhedra. We have remarked the contrast
between this view and the classical representation of ionic solids in terms of slightly deformed
spheres that leave unfilled interstitial space. We will show now that the topological description
contains this representation too. This is so because the electron density is a scalar field with
extremely large variations along the bonding lines. As an example, we notice that in KMgF3

the density at the nuclei is 4.539× 103 (K+), 1.091× 103 (Mg2+), and 3.369× 102 (F−) au,
whereas it becomes 3.661× 10−2 au at the Mg–F bond CP, 1.177× 10−2 au at the K–F bond
CP, and 9.913× 10−3 au at the F–F bond CP.

The shape of the ions, as deduced from isodensity contours, heavily depends on the value
selected for drawing the isosurface. In this example, any representation withρ > 0.040 au
would mask any bonding feature and will give the classical view of nonoverlapping spheres
centred at the nuclei. As we reduce the value of the selected density and approach the bonding
regime, the ionic species develop small spikes in the directions of the bond lines. The spikes
of two ions touch when the isodensity coincides with the density of the bond CP. The surfaces
of lower density show the spikes transformed in bonding spaces of approximately cylindrical
shape. In figure 2 we present the surfaces of constant density for KMgF3 for ρ = 0.020 au.
This value is low enough to reveal the Mg–F bond but still leaves the K+ ion as a nearly perfect
isolated sphere. The shape of the ions and the bonding picture of a crystal are thus at hand
from the results of the topological analysis, The electron density, properly scanned, can give
extremely detailed information of quantitative value and great beauty.

Figure 2. Surfaces of constant electron densityρ = 0.020 au in KMgF3 computed with the
program CRITIC and rendered with POV-Ray [12].

3.2. The nature of the bond

The topological analysis is particularly well suited to provide information on the nature of the
chemical bond in crystals because the graphical representation of appropriate scalar fields on
the surfaces of the basins gives illuminating images of the bonding situation. Thus, depicting
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directly the electron density we observe the zones of accumulation and depletion of charge.
Sites where electron density heaps up reveal the presence of bond CPs. In figure 3 (left)
we show the electron density on the surfaces of the basins for CsBeI3, a crystal of theC12

topological species. We observe that the accumulation of density along the I–I bond is larger
than those along the Be–I and Cs–I bonds.

Figure 3. The electron density (left) and Laplacian (right) on the surface of the ionic basins of
CsBeI3 computed with the program CRITIC and rendered with GEOMVIEW [13]. Higher values
correspond to darker tone.

The strength of the bond, however, is determined by the behaviour of the Laplacian of the
electron density,−∇2ρ. A representation of this scalar field for CsBeI3 appears in figure 3
(right). Here we see that the larger accumulation appears along the Be–I directions, showing
the relevance of this bond in the formation of the perovskite. This behaviour ofρ and−∇2ρ

on the basin surfaces has been observed in the 120 cases. Other scalar fields and regulatory
theorems like the virial theorem can be analysed in a similar way.

3.3. Ionicity and ionic radius

We finally describe the direct way of analysing bonding properties like ionicity (through the
ionic topological charges) and ionic radii. The ionic charge is obtained by integration of the
charge operator over the density of the basin. Topological ionic charges obtained in this way,
averaged over the 120 perovskites, are collected in table 1.

We see that the charges of the alkali ions deviate by 0.01 au from the formal +1.0 value,
revealing the high ionicity of these crystals and the negligible contribution of the mono-positive
A species to the rearrangement of charge accompanying the process of crystal formation. The
gross average for the halide ions is−0.952 au and that for the di-positive cations is 1.863 au.
Thus, the image of a weak X→ M charge transfer emerges, in accordance with the qualitative
expectations from conventional bonding descriptions. The amount of this effective charge
transfer correlates with the nuclear charge in the M2+ series but this correlation is not apparent
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Table 1. Topological ionic charges averaged over 120 perovskites. The last line gives gross average
values.

Ion Charge Ion Charge Ion Charge

Be 1.954 Li 0.9970 F −0.9630
Mg 1.891 Na 0.9914 Cl −0.9446
Ca 1.863 K 0.9896 Br −0.9490
Sr 1.832 Rb 0.9852 I −0.9499
Ba 1.826 Cs 0.9990
Zn 1.811

〈qM〉 1.863 〈qA 〉 0.992 〈qX 〉 −0.952

within the X− and A+ series.
Let us turn now to the concept of ionic radius. As remarked above, the ionic radius assigned

to an attraction basin depends on the direction selected. A single value can be assigned to an
ion by averaging over all directions. This average can be defined as the radius of the sphere
of volume equal to that of the ionic basin. The resulting values behave in complete agreement
with the physical expectations. For instance, they increase, for each group of ions, with the
atomic number; they show larger dispersion when going down the Periodic Table, etc. It has
been noticed [5] that the alkali halides show a larger variation over the crystals, in contrast with
their smaller polarizability. This dispersion can be related to the weaker bond holding these
species, in agreement with the picture produced by their almost nominal electronic charge.

From all of this and previous [4,5] discussions we conclude that the AIM theory supplies
a rigorous foundation for important historical concepts like ionicity, index of coordination,
coordination polyhedra, or volume of an atom or ion in a solid. Several interesting mappings
between atoms and polyhedra can be built, some of which have been examined and exploited
in this work. We believe that there is plenty of room in solid-state thinking for the new
tools and concepts emerging from the AIM approach. A judicious use of them will give new
ways to establish an accurate correlation of quantum mechanical origin between the chemical
behaviour and chemical structure in solids. This new approach should offer a new path to
insight and discovery.
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